はじめに

では、 状態が把握できるのみである。 考えられ、その診断手法として「潤 化傾向の予測が可能となる。 継続的に診断することにより、 滑油診断 た従来の単独手法だけでは設備 ログラフィー法、 原因としては、 「トライボロジー」を活用した潤 ポンプ設備等機械設備の劣化 機械設備の状態把握に加え 各調査手法を組み合わせた 以下、 があげられるが、 摩擦に伴う摩耗が ソープ法と言っ トライボ診断 フェ

健全度を報告する。 機を対象に実施した、トライボ診 断結果及び機械設備の劣化傾向 事業で設置した排水ポンプの減速 今回、 国営射水郷総合農地防災

二. トライボロジーとは

トライボロジーとは、「摩擦す

「フロント」〜農政の前線から〜

エンジン

ポン

①潤滑油の劣化状態

表―1に示す。

潤滑油の分析項目とその結果を

トライボロジー を活用し た機械設備の診断方法

態で採取した。

潤滑油が十分均質となっている状 は事前に約15分程度の運転を行い 真―2)。

潤滑油を採取する際に

滑油の量は1000cである(写 実施した。減速機から採取した潤

小林

1) について、

トライボ診断を

災事業で設置した立軸軸流ポンプ

平成7年国営射水郷総合農地

調査方法

の減速機

(写真

博 (北陸農政局西北陸土地改良調査管理事務所保全整備課長)

写真 2

分析結果 写真 - 1

あるが、 間に542時間使用された状態で 年10月21日~平成24年2月1日の 同程度の数値であり、 の各項目のデータは新油値とほぼ 潤滑油の物理的性状は、 粘度、 水分、 酸価、 初期の性能 平成 I R

考える

較検証を実施することが不可欠と 点検」を実施して診断結果との 必要があり、さらに機械の

粒子を含め分析することによって

その中に含まれる金属の摩耗

などから潤滑油・グリースを採取

プ設備の軸受、減速機、 ジーを活用した潤滑診断は、 扱う技術分野である。トライボロ 久性に影響を及ぼす潤滑や摩擦を とされており、機械の信頼性や耐 る表面と潤滑に関する科学技術

減速機等を分解せずに機械の状

を把握するものである

③機械の摩耗状態であ から得られる情報は、 ②潤滑油の ②潤滑油の汚染状態 を保持していることが確認された。

汚染状態 ①潤滑油

この診断

の劣化状態

鉄錆、 異物の影響が考えられる。 要因は摩耗とスラッジ、 異物観察で表面が茶褐色で金属片 を超えていた。フィルター表面の 計数汚染度は管理限界値 砂等が観察されたことから 外部混入 (12 級)

③機器の摩耗

れる。 とから、 メータである異常摩耗指数 状態の異常を早期に発見するパラ 摩耗粒子」が観察されたが、 の噛み込みにより発生する 油中の金属摩耗粒子には、 が220と小さな値であるこ 摩耗状態は正常と判断さ 「切削 潤滑 Îs

④総合評価

<u>Ŧ</u>.

まとめ

本診断手法の導入により、

今後の運転状況に大きな変化がな 摩耗の進行状況の確認が重要と考 砂や外部異物は歯車より硬度が高 ることから定期的に分析を実施し 況にあると判断できる。 ければ、この減速機は少なくとも を与えるほどではなく、潤滑状態 では潤滑状態の悪化に大きく影響 より汚染度が高いものの、現時点 1年間程度は継続使用が可能な状 は正常な範囲にあると判断できる 本試料は摩耗粒子や外部異物に 歯面の摩耗進行に影響を与え しかし、

費の節減が期待できる。

にも、継続してデータを収集する 本手法の有効性を判断するため

「分解

図ることが可能となり、

維持管理

解整備の時期についても適正化を た診断や、多額の費用がかかる分 すべき状態であるか否か」といっ 常兆候の早期発見」や「分解整備

分析項目			単位	分析目的	限界値	新油値	測定値
油劣化	粘度40°C		mm²/s	①潤滑油酸化劣化の進行 ②不溶解分の増加 ③異種油混合の確認 ④潤滑油特性	85. 9~ 116. 2	101.0	100. 0
	水分		ppm	水分量の測定	500	67. 2	46. 7
	商金信 面		mgKOH/g	油中酸成分の測定	-	0. 80	0. 76
	赤外線吸収 スペクトル (IR)		-	①有機物の同定・確認 ②酸化防止剤の残存量測定 ③酸化劣化物の測定 ④異種油混合の確認	=	-	良好
油污染	計数汚染度 (NAS等級)		-	油中粒子の数量をサイズ毎に測定	12	11	12<
	質量汚染度		mg/100ml	油中の不溶性汚染物の質量を測定	2. 0	-	2. 6
	光学顕微鏡写真		-	油中の汚染物を観察	-	_	金属片·鉄銀 砂等
摩耗	フェロ グラフィー	大摩耗粒子量	%/m1	摩耗の原因・摩耗箇所を判定	-	-	21.0
		小摩耗粒子量	%/ml				15.0
		Is値	_		_	_	220
	SOAP-T	イオン	ppm	油中の金属元素と濃度の精密分析	-	省略	省略
		固形分	mag		-	省略	省略